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Abstract Macro-architectured cellular (MAC) material
is defined as a class of engineered materials having
configurable cells of relatively large (i.e., visible) size that
can be architecturally designed to achieve various desired
material properties. Two types of novel MAC materials,
negative Poisson’s ratio material and biomimetic tendon
reinforced material, were introduced in this study. To
estimate the effective material properties for structural
analyses and to optimally design such materials, a set of
suitable homogenization methods was developed that
provided an effective means for the multiscale modeling
of MAC materials. First, a strain-based homogenization
method was developed using an approach that separated
the strain field into a homogenized strain field and a strain
variation field in the local cellular domain superposed on
the homogenized strain field. The principle of virtual
displacements for the relationship between the strain
variation field and the homogenized strain field was then
used to condense the strain variation field onto the
homogenized strain field. The new method was then
extended to a stress-based homogenization process based
on the principle of virtual forces and further applied to
address the discrete systems represented by the beam or
frame structures of the aforementioned MAC materials.
The characteristic modes and the stress recovery process
used to predict the stress distribution inside the cellular
domain and thus determine the material strengths and
failures at the local level are also discussed.

Keywords architectured material, cellular materials,
multi-scale modeling, homogenization method, effective
material properties, computational method

1 Introduction

1.1 Tendency of the new material development

Lightweight materials have become a critical requirement
for reducing the weight of automotive and aerospace
vehicles to achieve better fuel efficiency, lower emissions,
and improved environmental protection. Parallel to the
effort of improving the strength of traditional metal
materials, new materials, such as fiber-reinforced compo-
sites, foams, lattice, and sandwich materials have been
developed to expand the boundaries of the material
property space defined by traditional solid materials.
Important features in these new materials include 1)
using two or more raw materials in a composition to form a
new material, and 2) introducing porosity into solid
materials. The use of two or more raw materials in a
composite makes it possible to make the best use of the
unique properties of raw materials and to compensate for
their weaknesses. For example, fiber materials usually
have very high tension strength but have no compression
resistance. By composting fiber materials, e.g., carbon
fiber with a matrix material such as resin, the weakness of
the fiber can be overcome. However, introducing porosity
in a composite material usually can further improve the
bending stiffness (and other features) of the resulting
structure and reduce the weight significantly. These new
materials are artificially made and usually have a cellular
structure with some kind of architecture within the
characteristic cells; therefore, they are called “architectured
cellular materials” in this study [1].
In our opinion, there are two opposite tendencies in the

development of architectured materials: One tendency is to
reduce the scale of the materials, i.e., by having smaller
cells, and the other is increase it. Nowadays, researchers
have been able to fabricate new materials in very small
scales, such as nano and atomic scales. As shown on the
left side of Fig. 1, graphene, nanotube, and micro-trusses
have been developed. These kinds of materials are called
micro-architectured materials [2]. Even though micro-
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architectured materials can achieve an extra-high strength/
weight ratio, they can usually only be used as reinforce-
ment in a matrix material if their structural functionalities
are to be utilized. However, architectured materials can be
fabricated in a larger scale with relatively larger cells as
shown on the right side of Fig. 1. We call the architectured
materials with larger cells “macro-architectured cellular”
(MAC) materials, which usually can provide a better
structure performance/cost ratio [3,4] and can easily
expand the coverage of the material property space [1].

1.2 Macro-architectured cellular (MAC) materials

MAC material is defined as a class of engineered materials
that has configurable cells in a relatively larger size
(compared with micro-architectured materials [2]). MAC
materials can be designed to suit various desired material
properties. Figure 2 illustrates a roadmap of MAC material
development. As shown in Figure 2, first, solid materials
are fabricated as architectured structures for improving the
efficiency of the material usage in the structures. For
example, I-beams and channel strips are developed to have
special cross-section shapes to achieve better load-bearing
capability with less weight. Next, two or multiple materials
are synthesized to form various composite materials such
as carbon-fiber-reinforced polymer composites with typi-
cal woven configurations of fibers. Finally, porosities are
introduced into the materials with various cellular config-
urations to treat empty space with the functionality of the
materials, which is a major feature of MAC materials.
Figure 2 also illustrates that the use of multiple raw
materials (including a single material) with an architec-
tured cellular design of the unit cell make it possible to
obtain high-performance, function-oriented, and low-cost
materials. In contract to micro-architectured cellular
materials, MAC materials can be manufactured with

combined traditional fabrication techniques, such as
metal cutting, stamping, welding, bolding, gluing, mold-
ing, weaving, and braiding, which results in better
productivity.
Figure 3 shows some examples of MAC materials found

on the Internet. Figure 3 illustrates that MAC materials can
be fabricated using various manufacturing methods,
including material penetration, material expanding, weav-
ing, foaming, 3D weaving, and stamping+ welding.
Figure 4 shows further examples of MAC materials being
fabricated using a 3D printing machine, which illustrates
that modern additive manufacturing technologies have
opened the door for producing a variety of novel MAC
materials which have never before seemed possible. Two
novel types of MAC material have recently been
developed by this author’s research group, namely
negative Poisson’s ratio (NPR) materials [5] and biomi-
metic tendon reinforced (BTR) materials [6,7], which will
be introduced in Section 2.
The characteristics and general features of MAC

materials can be summarized as follows:
1) The creation of a MAC involves the removal of the

low-efficiency portion of a material;
2) It involves the addition of porosity into a solid

material;
3) MAC materials are created by using two or more raw

materials if possible;
4) They are architecturally designed;
5) Function-oriented design is employed in developing

them;
6) This enables maximization of the multi-functionality

of material;
7) They can be manufactured using traditional fabrica-

tion techniques, e.g., metal cutting, stamping, welding,
bonding, gluing, molding, weaving, and braiding;
8) They may be effectively developed using 3D printing.

Fig. 1 Tendency of new material development. Left: Going to a smaller scale; right: Going to a larger scale
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1.3 Prediction methods of effective material properties of
MAC materials

Multiscale modeling and homogenization have become

rich areas of research. Fruitful results have been published
with a wide range of applications as listed in recent
literature review papers [8‒10]. Homogenization, espe-
cially asymptotic homogenization [11‒13], provides a
powerful mathematical tool for bridging different scale
modeling problems and solving micro-macro, local-global,
nano-macro, multiscale modeling problems. The applic-
able areas include so-called heterogeneous materials,
cellular materials, granular materials, and fiber-reinforced
polymers. The homogenization method has also been
utilized in topology optimization processes [14,15].
Although the advantages in the mathematical process of
asymptotic homogenization are appreciated, they are often
overlooked in favor of the “mechanics logics” inside the
homogenization modeling process. Existing asymptotic
homogenization methods [16‒20] have provided effective
means for the multiscale modeling of continuum solids;
however, there is a need for extending them to more
general applications such as handling the discrete systems

Fig. 2 Roadmap of MAC materials

Fig. 3 Example MAC materials

Fig. 4 MAC materials by 3D printing (fabricated at MKP
Structural Design Associates, Inc.)
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discussed in this study. To estimate the effective material
properties and to optimally design the MAC materials
discussed in this study, a more suitable homogenization
process is needed.
This study provides a new homogenization process that

is based on engineering and mechanics rather than on
mathematics. It is useful to provide a more systematic
explanation for mechanics-based homogenization.
Another important point is that, theoretically, the mathe-
matical asymptotic homogenization process requires a
micro-cell to be small or infinitely small to assume
convergence of the process, but this is not necessary for
mechanics-based homogenization. In fact, mechanics-
based homogenization can be considered a coordinate
reduction process like a Guyan reduction [21], which is
widely used in solving structural dynamics problems.
Therefore, relatively larger size cells can be treated in
various applications, including in architectured cellular
materials.
First, continuum solids were considered and a

mechanics-based homogenization process was developed
based on the principle of virtual displacements.
Mechanics-based homogenization provides a better under-
standing in terms of the mechanics behind the homo-
genization process. This new approach separates the strain
field into a homogenized strain field along with a strain
variation field in the local cellular domain superposed on
the homogenized strain field. The principle of virtual
displacements describing the relationship between the
strain variation field and the homogenized strain field is
then used to condense the strain variation field to the
homogenized strain field. Hence, the homogenization
process is treated as a coordinate reduction process like a
Guyan reduction.

The new method has two variants: One is a strain-based
homogenization, and the other is a stress-based homo-
genization. The stress-based homogenization process is
obtained based on the principle of virtual forces. Similar to
strain-based homogenization, stress-based homogenization
separates the stress field into a homogenized stress field
and a stress variation field superposed on the homogenized
stress field. The principle of virtual forces is then used to
condense the stress variation field into the homogenized
stress field. The stress-based homogenization process can
be extended easily to address discrete systems, such as
those MAC materials modeled by beam and frame
structures. The new method is then utilized to obtain the
effective material properties of the MAC materials
discussed in this study.
New formulas were obtained to calculate the effective

mass density and body forces with improved approxima-
tions, which can be further extended to consider other body
forces such as thermal and magnetic forces. The
characteristic strain modes and corresponding character-
istic displacement modes are discussed. A recovery
process is further considered for recovering the local strain
and stress in the cellular domain after the global analysis.

2 Two novel MAC materials

Two types of useful MAC materials have been developed
[5‒7]. One type is the three-dimensional NPR material [5]
shown in Fig. 5, and the other is the so-called BTRmaterial
[6‒7]. Both are originally obtained through the topology
optimization process developed in Ref. [14]. These new
materials are similar to traditional lattice materials, but they
can be made of multiple raw materials and cannot be

Fig. 5 Design variables in a 3D NPR material cell
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referred to as “micro” because of their relatively larger
size.

2.1 NPR materials

Figure 5 illustrates the material cell model for the three-
dimensional NPR materials invented in Ref. [5]. NPR
materials are also called auxetic, anti-rubber, and dilata-
tional materials. Since Lakes [22] published his article in
Science in 1987, NPR materials have attracted increasingly
more attention because of their unique behavior. Unlike
conventional materials, NPR materials may shrink when
compressed and expand when stretched along the
perpendicular direction. The unique features of NPR
materials include, but are not limited to, stiffening under
a load, impact energy absorption, and the ability to be
engineered to have other desired functionalities.
As shown in Fig. 5, the invented NPR structure

comprises a pyramid-shaped unit cell having four base
points, A, B, C, andD defining the corners of a square lying
in a horizontal plane. Four stuffers of equal length or
different lengths extend from one of the respective base
points to a Point E spaced apart from the plane. Four
tendons of equal length or different lengths, but less than
the lengths of the stuffers, extend from one of the base
points to Point F between Point E and the plane. There are,
in general, five parameters that determine the cell

geometry, i.e., �ð1Þ1 , �ð2Þ1 , �ð1Þ2 , �ð2Þ2 , and he. For simplicity,

in this study, we assumed �
ð1Þ
1 ¼ �

ð2Þ
1 ¼ �1 and

�
ð1Þ
2 ¼ �

ð2Þ
2 ¼ �2, such that the geometrical parameters were

reduced to three: �1 , �2 , and he. The design parameters of
the NPR cell include the material properties of the stuffers
and tendons, as well as the shapes of the strips and the
cross-section shapes of the stuffers and tendons. In this
study, we assumed that the strips were straight and had
constant cross-sectional shapes that can be represented by
E1, A1, I1, and �1 for the stuffers and E2, A2, I2, and �2
for the tendons. Note, however, the strips can be curved
and the cross-section shapes can be varied along the axial
line.
In the three-dimensional configurations, a collection of

unit cells was arranged as tiles in the same horizontal plane
with the base points of each cell connected to the base
points of the adjoining cells, thereby forming a horizontal
layer. A collection of horizontal layers was then stacked
with each point E of the cells in one horizontal layer being
connected to Point F of the cells in the adjacent layer. The
above facts can be used to determine the connectivity
among the adjacent cells and then used to determine the
boundary conditions for the cell analyses in the homo-
genization process.
As shown in Fig. 6, special properties of the NPR

materials include a) a reaction to a load (stiffening under
pressure), b) a wide range of material property coverage, c)
the ability to be functionally graded and function-oriented
designed, and d) an excellent impact energy absorption
capability for lightweight anti-collision energy absorption
structures. Figure 6(a) illustrates that a MAC material with

Fig. 6 Special properties of NPR materials. (a) Reaction to load (stiffening under pressure); (b) wide range of material property
coverage; (c) able to be functionally graded and function-oriented designed; (d) excellent impact energy absorption capability
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NPR properties was shrinking under a concentrated load,
thus providing more resistance to the load. Figure 6(b)
illustrates that a quasi-3D metallic NPR material can cover
a wide range of Yong’s modulus by varying only two
angular design variables defined in Figure 5. Figure 6(c)
illustrates that the layer-by-layer design of a 3D NPR
material can deform to a special shape under a blast load
that can deflect the blast wave. Figure 6(d) further
illustrates a blast testing result, which shows a significant
blast impact force was insulated by the NPR material.
Potential applications of NPR materials include, but are

not limited to:
- Lightweight anti-collision energy absorption compo-

nents such as bushings, bumpers, and mounts [23];
- Non-pneumatic tires [24];
- Anti-explosion energy-absorption materials;
- Deployable structures [25];
- New types of sofa cushions and mattresses, and
- Stents [26].

2.2 BTR materials

Figure 7 illustrates the parameterization of the BTR
materials proposed in literature [6,7]. As shown in
Fig. 7, BTR has three major components: 1) Cover sheets
on the top and bottom, which are usually made of thin
composites (such as fiber-reinforced polymer) or metallic
sheets, 2) stuffers, which are usually made of stiff materials
such as metallic columns, ceramics, or high-stiffness
composites, and 3) tendons, which are usually made of
high-strength tension materials, such as metal wires or
high-strength fibers. In summary, BTR materials can be
made of various raw materials depending on the applica-
tion. Major features of BTR materials are their lightweight
and high material efficiencies, especially their out-of-plane
bending stiffness as compared to existing composite
materials. As shown in Fig. 7, the major design parameters
for the geometry of BTR materials are h2, l1, and t1.

Other design parameters include the material properties
of sheets, stuffers, and tendons represented by
Ei and �i ði ¼ 1,2,3Þ, the cross-sectional area of the
stuffers represented by A2, and the cross-sectional area of
the tendons, A3.
Potential applications of BTR materials include, but are

not limited to:
- Lightweight anti-collision components such as bum-

pers of automotive vehicles;
- Covering panels for vehicle body structures;
- Lightweight anti-explosion protection materials, e.g.,

armor [27,28] and battery protection boxes;
- Building materials, insulation walls, roofs, and solar

panels;
- Lightweight furniture, desks, doors, and dividing

panels; and
- Mobile homes and template building with high

strength and improved thermal protection.

3 MAC material property prediction
methods

Existing asymptotic homogenization methods [11‒13]
have provided effective means for the multiscale modeling
of continuum solids; however, they are often overlooked in
favor of the “mechanics logics” inside the homogenization
modeling process, and there is a need for extending them to
more general applications such as handling the discrete
systems discussed in this study. This study provides a
mechanics-based homogenization method based on engi-
neering and mechanics rather than on mathematics. First, a
mechanics-based homogenization process was developed
based on the principle of virtual displacements. The new
approach separates the strain field into a homogenized
strain field along with a strain variation field in the local
cellular domain superposed on the homogenized strain
field. The principle of virtual displacements describing the

Fig. 7 Design variables in a BTR material cell
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relationship between the strain variation field and the
homogenized strain field was then used to condense the
strain variation field to the homogenized strain field.
Hence, the homogenization process was treated as a
coordinate reduction process.

3.1 Governing equation

The elastostatics problem of a MAC material cell can be
defined in a form of principle of virtual displacements with
an extension to an elastic-dynamics problem as shown in
Eq. (1). Here Ωε (Ωε � R3) was assumed to be a structural
domain with a cellular structure that is in periodic or other
forms, provided the proper connections among the
adjacent cells can be defined; Γt is the traction boundary
of Ωε.

!
Ωε

δεTDεεdΩþ!
Ωε

δuT�ε€udΩ ¼ !
Ωε

δuTf ε dΩþ!
Γt

δuTtdΓt,

(1)

where ε denotes the engineering strain vector (εT ¼
fεx,εy,εz,γyz,γzx,γxygT), u denotes the displacement vector,

€u ¼ ∂2u=∂t2 denotes the acceleration vector, f ε denotes
the body force vector, and t is the boundary traction vector,
δε denotes the virtual strain vector, δu denotes the virtual
displacement vector, V ¼ fδu 2 H1ðΩεÞjδujΓd ¼ 0g
denotes the space of kinematically admissible displace-
ment fields, and Γd is the displacement boundary. H1ðΩsÞ
is the Sobolev space in which the strain energy of the
structure is finite. Dε denotes the elasticity matrix before
the homogenization, and �ε is the density before the
homogenization.
For simplicity, in the following, we assume a three-

dimensional solids problem, even though the formulation
obtained can be applied to two-dimensional solids
problems and problems such as beams, plates, or shells.
We also assume a linear elasticity problem with a constitute
law σ ¼ Dε, where σ is a Cauchy stress vector
(σT ¼ f�x,�y,�z,τyz,τzx,τxygT), and D ¼ ½Dij�6�6 is the
material stiffness matrix, even though the formulation
obtained can be extended easily to nonlinear problems.
Note, the principle of virtual displacements requires the

following continuity conditions to be satisfied:

ε ¼ EðrÞu  ,δε ¼ EðrÞδu, (2)

where

EðrÞ ¼

∂
∂x

0 0 0
∂
∂z

∂
∂y

0
∂
∂y

0
∂
∂z

0
∂
∂x

0 0
∂
∂z

∂
∂y

∂
∂x

0

2
6666664

3
7777775

T

: (3)

3.2 Material property calculation method-homogenization
process

The asymptotic homogenization method (AHM) [11‒13]
for an elastostatic continuum was derived using the
mathematical approach described below. First, it was
assumed that the structure in a domain Ωε had a Y-periodic
microstructure. The periodicity is represented by a
parameter ε, which is very small, and the elastic tensor is
given in the form of Eεijkl ¼ Eijklðx, yÞ where y↕ ↓Eijklðx,yÞ
is the Y-periodic, x is the macroscopic variation of the
material parameters, and y ¼ x=ε gives the microscopic
periodic variations. Supposing that the structure is
subjected to a macroscopic body force and a macroscopic
surface traction, the resulting displacement field uεðxÞ can
then be expanded as uεðxÞ ¼ u0ðxÞ þ εu1ðx, yÞ þ oðε2Þ
where the leading term u0ðxÞ is a macroscopic deformation
field that is independent of the microscopic variable and
u1ðx, yÞ is a microscopic deformation field. Substituting
the above assumptions into the governing equation and
comparing the terms in the same order of ε, one can obtain
the effective material properties (i.e., Eq. (15)) and the
homogenized governing equation (i.e., Eq. (14)) [1].
Note that the aforementioned AHM approach was

obtained based on the assumption of infinitely small
cellular cells; however, it does not explain why, in many
cases, one cannot obtain better results by considering
higher-order terms of ε, which indicates that the Taylor
expansion in the approach may not generally converge.
The approach also has a theoretical limitation in its
extension to larger cells. It lacks explicit instructions for
how to determine the boundary conditions in a micro-cell
analysis with the exception of mentioning the use of the
periodic boundary conditions. In fact, the periodic
boundary conditions may not be able to remove the rigid
body motion of the micro-cell, and different boundary
conditions may be required to solve different subcases in
the homogenization process, as illustrated in Section 3.6.
It is important to provide a more systematic explanation

for the homogenization process. Another important point is
that, theoretically, the mathematical asymptotic homoge-
nization process requires the micro-cell to be small or
infinitely small to assume convergence of the process, but
this is not necessary for mechanics-based homogenization.
In fact, mechanics-based homogenization can be consid-
ered a coordinate reduction process like a Guyan reduction
[21], which is widely used in solving structural dynamics
problems. Therefore, relatively large-size cells can be
treated in various applications, including in architectured
cellular materials.
We employed an approach based on an engineering

approach and the mechanics of the problem. We
considered mechanics-based homogenization as a coordi-
nate reduction process analogous to the Guyan reduction
described in Ref. [1]. Unlike the AHM approach, we
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considered a macro-structural problem with the same
coordinate system describing both the homogenized
(global) problem and the local problem in the cellular
domain Y. Then, the strain in the domain Y could be
calculated by the same differential operator as that of the
global strain. However, it was assumed in this study that 1)
the cellular structure had periodic cells (even the
periodicity can change from place to place provided the
connectivity is assured), 2) the dimensions of the cells
were considerably small compared with the dimensions of
the structure, and 3) the material sample was taken from a
large portion of the structure, so that structure’s boundary
effects on the homogenization process could be ignored.
Instead of separating the nodal coordinates into internal

coordinates and boundary coordinates as in a Guyan
reduction, we separated the strain field ε into a
homogenized strain field εh that is constant over the
cellular domain and continuous over the homogenized
structural domain, and a strain variation field εv ¼ εvðyÞ
(y 2 Y ) superposed on εh, which is defined in the cellular Y
domain and varies in Y, to obtain

ε ¼ εh þ εv: (4)

The displacement fields corresponding to εh and εv are
denoted as uh and uv, and we get

u ¼ uh þ uv, (5)

as well as the following relationships:

εh ¼ EðrÞuh   ðin ΩÞ  and  εv ¼ EðrÞuv   ðin  Y Þ  : (6)

Substituting Eq. (4) into Eq. (1) produces

!
Ωε

ðδεh þ δεvÞTDεðεh þ εvÞdΩþ !
Ωε

δuT�ε€udΩ

¼ !
Ωε

δuTf εdΩþ !
Γt

δuTtdΓt: (7)

Equation (7) can be separated as

!
Ωε

δεThDεðεh þ εvÞdΩþ !
Ωε

δuT�ε€udΩ

¼ !
Ωε

δuTf εdΩþ!
Γt

δuTtdΓt

!
Y

δεTvDεðεh þ εvÞdy ¼ 0 ð8Y � ΩεÞ

8>>>>>>>><
>>>>>>>>:

: (8)

Notably, if both equations in Eq. (8) are satisfied while
satisfying the continuity conditions in Eq. (6) and the
connectivity among adjacent cells, then the original
equation, Eq. (7) (i.e., Eq. (1)), will be satisfied. Here,
theoretically, we do not have to assume that the cellular Y
domain is small. Furthermore, note that periodicity and
connectivity together defined boundary conditions among

the adjacent cells, and therefore the second equation in Eq.
(8) became solvable.
To solve the second equation in Eq. (8), we represent the

strain variation εv ¼ εvðyÞ with a mode superposition
technique; whereas, in Eq. (9), φðyÞ is a matrix constructed
of dmodes (d = 6 for the three-dimensional solids, d = 3 for
the two-dimensional solids, and d can be other numbers
for, e.g., beams, plates, and shells problems) with εh as the
modal coordinates, namely

εvðyÞ ¼ φðyÞεh   ðy 2 Y Þ: (9)

Note, Eq. (9) is an equivalent transformation; therefore,
there is no error induced as long as the modes in φ are
linearly independent. Substituting Eq. (9) into the second-
row equation in Eq. (8) results in

!
Y

δεTvDεðI þ φÞdy
" #

εh ¼ 0, (10)

or

!
Y

δεTvDεðI þ φÞdy ¼ 0: (11)

Solving Eq. (11) with the continuity conditions in Eq.
(6) and the properly defined boundary conditions (periodic
boundary conditions for now), we obtain φðyÞ (y 2 Y ), and
εv now becomes a function of εh. We now assume that the
displacement field corresponding to εv can be obtained as

uv ¼ �ðyÞuh   ðy 2 Y Þ, (12)

where θðyÞ satisfies
φðyÞ ¼ EðrÞθðyÞ  ðy 2 Y Þ: (13)

Then, substituting Eqs. (9) and (12) into the first-row
equation in Eq. (8) results in

!
Ω

δεThDHεhdΩþ!
Ω

δuTh�
H€uhdΩ

¼ !
Ω

δuTh f
HdΩþ!

Γt

δuTh t
HdΓt, (14)

where Ω stands for the homogenized domain of Ωε, and

DH ¼ 1

jY j !
Y

DεðI þ φÞdy, (15)

ρH ¼ 1

jY j !
Y

�
I þ θðyÞ

�T
�ε
�
I þ θðyÞ

�
dy, (16)

f H ¼ 1

jY j !
Y

�
I þ θðyÞ

�T
f εvdy, (17)

tH ¼ 1

jLj !
ΓtY

�
I þ θðyÞ

�T
tds, (18)
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where ΓtY ¼ Γt \ Y .
Notably, the homogenized material stiffness matrix in

Eq. (15) is exactly the same what obtained from the
asymptotic homogenization method [1]; however, the
effective mass density in Eq. (16), the effective internal
force in Eq. (17), and the effective traction in Eq. (18) are
different from the traditional asymptotic homogenization
process. The AHM can only provide averaged mass
density, averaged body force, and averaged traction, but
the new method gives the material properties from a
process like the static condensation, which results in better
accuracy for high-frequency analyses problems. Also, note
that unlike Guyan reduction, which condenses the internal
degree-freedoms into the boundary degree-freedoms, the
new method condenses the representatives of the strain
variation onto the representatives of the homogenized
strain field, which made formulation developed in this
study relatively insensitive to the actual physical size of the
cells and the actual boundary conditions among the
adjacent cells.

3.3 Solution using a finite element method

By following a standard finite element approach and
assuming an assembly of nodal displacement vectors, χ ¼
½χð1Þ,χð2Þ,:::,χðdÞ� and a shape function N ¼ NðyÞ in Y, θðyÞ
in Eq. (12) can be represented as

θ ¼ NðyÞχ, (19)

and we can have

φ ¼ BYχ and δε1 ¼ BYδξ, (20)

where

BY ¼ EðrÞNðyÞ: (21)

Substituting Eq. (20) into Eq. (11) gives

!
Y

δ�TðBT
YD

εBY Þχdyþ!
Y

δξTBT
YD

εdy ¼ 0: (22)

Equation (22) results in the following finite element
equations:

KY χ
ðiÞ ¼ FðiÞ

Y ði ¼ 1,2,:::,dÞ, (23)

where

KY ¼ !
Y

ðBT
YD

εBY Þdy, (24)

and FðiÞ
Y is the i-th column in FY and

FY ¼ –!
Y

BT
YD

εdy: (25)

Solving Eq. (23) for χ ¼ ½χð1Þ,χð2Þ,:::,χðdÞ� gives

χ ¼ K – 1
Y FY ¼– !

Y

BT
YD

εBYdy

 ! – 1

!
Y

BT
YD

εdy

 !
, (26)

and then the homogenized material stiffness matrix can be
obtained as

DH ¼ 1

jY j !
Y

DεðI þ BYχÞdy: (27)

Note, it is interesting to compare Eq. (26) to the
reduction equation in the Guyan reduction to see the
similarities, as well as the similarity of the homogenization
process with the Guyan Reduction (refer to Ref. [1]).

3.4 Characteristic modes

Notably, φ in Eq. (9) is a matrix constructed of d vectors
(e.g., d = 6 for three-dimensional solids), namely

φ ¼ ½φð1Þ,φð2Þ,:::,φðdÞ
φ �, where each φðiÞ is labeled a

characteristic strain mode of the cellular structure corre-
sponding to a forced unique strain field applied over the
cellular Y domain, where i ¼ 1, 2, :::, d. In fact, Eq. (9)
can be rewritten as

εv ¼
Xd
i¼1

φðiÞεðiÞh , (28)

where εð1Þh ¼ εx , ε
ð2Þ
h ¼ εy , :::, ε

ðdÞ
h ¼ gxy, and εh can be

rewritten using a strain coordinates system, eðiÞ ði ¼
1, 2,:::,dÞ, as

εh ¼
Xd
i¼1

eðiÞεðiÞh : (29)

Here, for d ¼ 6,

eð1Þ ¼

1

0

0

0

0

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, eð2Þ ¼

0

1

0

0

0

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, :::, eð6Þ ¼

0

0

0

0

0

1

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
: (30)

By substituting Eqs. (28) and (29) into the second-row
equation in Eq. (8), the equation for each characteristic
strain mode φðiÞ can be obtained:

!
Y

δεTvDεφðiÞdyþ!
Y

δεTvDεeðiÞdy ¼ 0 ði ¼ 1, 2,:::,dÞ:
(31)

Equation (31) describes the physical meaning of the
characteristic strain mode φðiÞ, which is the response to an
applied uniform unit strain field eðiÞ in the cellular domain.
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As shown in the second term of Eq. (31), each uniform
strain eðiÞ results in a stress field, described as a pre-stress
applied in the cellular domain, such that

σðiÞ
0 ¼ DεeðiÞ ði ¼ 1, 2,:::,dÞ: (32)

Therefore, Eq. (31) can also be rewritten as

!
Y

δεTvDεφðiÞdyþ!
Y

δεTvσ
ðiÞ
0 dy ¼ 0 ði ¼ 1, 2,:::,dÞ:

(33)

The characteristic deformation modes of the cell can be
obtained by solving Eq. (23) with the following loading
condition:

FðiÞ
Y ¼ –!

Y

BT
YD

εeðiÞdy ði ¼ 1, 2,:::,dÞ: (34)

Solving Eq. (23) with Eq. (34) for χðiÞ results in

χðiÞ ¼ – !
Y

BTDεBdy

 ! – 1

!
Y

BTDεeðiÞdy

 !

ði ¼ 1, 2,:::,dÞ: (35)

As a special example, for a two-dimensional solid
problem, we have εT ¼ fεx,εy,gxygT, uT ¼ fux,uygT,
f T ¼ ffx,fygT, tT ¼ ftx,tygT, and εh can be written as

εh ¼
X3
i¼1

eðiÞεðiÞh , (36)

where

eð1Þ ¼
1

0

0

8><
>:

9>=
>;, eð2Þ ¼

0

1

0

8><
>:

9>=
>;, eð3Þ ¼

0

0

1

8><
>:

9>=
>;: (37)

Figure 8 illustrates the uniform unit strain fields in Eq.
(37) applied in the two-dimensional cellular domain.

3.5 Extension to the stress-based method

The elastostatics problem in Eq. (1) can also be stated
using the principle of virtual forces as

!
Ωε

δσTAεσdΩ ¼ !
Γu

δpTudΓ, (38)

where σ (σT ¼ f�x,�y,�z,τyz,τzx,τxygT for 3-dimensional
solids stands for the stress vector satisfying

EðrÞT� ¼ f   ðin ΩεÞ  and  EðηÞTσ ¼ t   on  Γu , (39)

where Aε is the material flexibility matrix; in general, we
obtain

Aε ¼ ½Dε� – 1: (40)

It is also assumed that δσ satisfies

EðrÞTδσ ¼ 0  in Ωε   and  Eð�ÞTδσ ¼ δp  on  Γu : (41)

Similar to the process described in Section 3.2, we
assume

σ ¼ σh þ σv, (42)

where σh stands for the homogenized stress field, σv is the
stress variation from the homogenized stress field in the
cellular domain; also, we assume

p ¼ ph þ pv, (43)

where ph stands for the boundary force corresponding to
the homogenized stress field σh, pv stands for the boundary
force corresponding to the stress variation σv. Equation
(38) can be then rewritten as

!
Ωε

δσT
hA

εðσh þ σv ÞdΩ ¼ !
Γu

δðph þ pvÞTudΓ

!
Y

δσT
vA

εðσh þ σv Þdy ¼ 0 for 8Y 2 Ω

8>>>>><
>>>>>:

: (44)

Similar to the process in Section 3.2, we assume a set of
stress modes z ¼ ½zð1Þ,zð2Þ,:::,zðdÞ� and

σh ¼
Xd
i¼1

eðiÞ1 σðiÞ
h   and  σv ¼

Xd
i¼1

zðiÞσðiÞ
h : (45)

Substituting Eq. (45) into the second-row equation in
Eq. (44) results in

!
Y

δσT
vA

εzðiÞdyþ!
Y

δσT
vA

εeðiÞdy ¼ 0 ði ¼ 1, 2,:::,dÞ,
(46)

then zðiÞ ði ¼ 1,2,:::,dÞ can be obtained by solving Eq. (46)
with the properly defined (periodic) boundary conditions,
and then the first-row equation in Eq. (44) becomes

!
Ω

δσT
hA

HσhdΩ ¼ !
Γu

δpThu
HdΓ, (47)

where

Fig. 8 Unit uniform strain field eðiÞ ði ¼ 1,2,3Þ applied in the 2-
dimensional cellular domain
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AH ¼ 1

jY j !
Y

AεðI þ z1Þdy, (48)

uH ¼ 1

jLj !
ΓuY

ðI þ ωÞTuds, (49)

such that

Eð�ÞTz ¼ ω  on  ΓuY   and  ΓuY ¼ Γu \ Y : (50)

Note, it is not necessary for the stress-based homo-
genization process to produce the same effective material
properties as the strain-based homogenization process. In
fact, based on the principle of virtual displacements and
principle of virtual forces, the strain-based homogenization
process may provide an upper boundary for the effective
material properties; the stress-based homogenization
process provides a lower bound for the effective material
properties.
As a special example, for a two-dimensional solids

problem, we have σT ¼ f�x,�y,τxygT, and σh becomes

σh ¼
X3
i¼1

eðiÞ�ðiÞh : (51)

Figure 9 illustrates the uniform unit stress fields in Eq. (46)
applied in the two-dimensional cellular domain.

Note that in Eq. (51), �ð1Þ
h ¼ �x , �

ð2Þ
h ¼ �y , �

ð3Þ
h ¼ τxy

is assumed.

3.6 Extension to the discrete systems

With the above understanding, the extension to discrete
systems can easily be performed by first converting the
applied unit stress field into concentrated forces and
applying them to the proper nodes of the cellular structure;
second, one must calculate the displacements at the
properly selected nodes to approximate the strain in the
cellular domain and use the obtained information to
approximate the effective material properties. As an
example, Fig. 10 uses a two-dimensional version of the

NPR material shown in Fig. 5 to illustrate the loading
conditions and boundary conditions for the homogeniza-
tion of a 2D NPR cell structure.
In Fig. 10, the vertical direction is set as the x-direction,

and the horizontal direction is set as the y-direction. As
shown in Fig. 10, there are three analysis cases
corresponding to the three characteristic modes in the
homogenization problem. Each loading case corresponds
to a unit stress field with an amplitude equal to the facing
area multiplied by the unit stress, which is 1. The boundary
conditions were determined by the periodicity considera-
tion as well as the symmetry of the cell structure and the
connectivity to the adjacent cells.
As shown in the left figure in Fig. 10, a concentrated

force P1 was applied at Point F, which represents the
tension stress on the top of the cell. Here, boundary
condition E (1, 1, 1) indicates that Node E is fixed along all
of the directions, including the x- and y-directions as well
as the deformation angle. Additionally, A (0, 0, 1) indicates
that only the deformation angle is fixed at Node A, and this
is the same for Node C.
As shown in the middle figure in Fig. 10, two

concentrated forces with equal amplitudes P2 were applied
at Points A and C in opposite directions, representing the
tension stress on the two sides of the cell. Here, the
boundary conditions were the same as in the left figure.
The right figure in Fig. 10 illustrates a shear force

applied on the cellular cell, for which C = A indicates the
periodicity boundary conditions required to be applied at
Nodes A and C, and F (1, 1, p) and E (1, 1, p) indicate the
periodicity boundary conditions for the deformation angle
at Nodes F and E.
Note that the boundary conditions must be considered

case by case for the typical cell configuration, structural
symmetry, and connectivity with the adjacent cells in
addition to the periodic arrangement of the cells in the
global domain.

3.7 Strain and stress recoveries

After the global analysis, the homogenized strain εh is
obtained, and it is easy to recover the local strain in the

Fig. 9 Unit uniform stress field eðiÞ ði ¼ 1,2,3Þ applied on the 2-dimensional cellular domain
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cellular domain as

ε ¼ εh þ εv ¼ ðI þ φÞεh, (52)

and therefore, the local stress is calculated as

σ ¼ Dεε ¼ DεðI þ φÞεh: (53)

Since

εh ¼ ðDHÞ – 1σh, (54)

submit Eq. (54) into Eq. (53) obtains

σ ¼ z1σh, (55)

here

z1 ¼ DεðI þ φÞðDHÞ – 1: (56)

From Eqs. (42) and (45), we have

σ ¼ σv þ σh ¼ ðI þ zÞσh: (57)

Comparing Eq. (55) with Eq. (57) we have

z ¼ z1 – I , (58)

where, z is the characteristic stress modes.
Note that when the homogenized strain and stress εh and

σh are known, the strain mode φ and stress mode z can be
used to recover the local strain and stress by using Eqs.
(52) and (57). These local strain and stress modes can be
then used to determine the potential failures and failure
modes of the MAC material or to predict the strength (or
the plastic deformation limit) of the MAC material.
Furthermore, the failure modes can be utilized to determine
the critical loads and to further improve the architecture
design of the MAC material.

4 Material properties and characteristic
modes of NPR materials

4.1 Material properties

Figure 10 illustrated three analytical cases with the loading
and boundary conditions for the homogenization of a 2D
NPR cell structure. In the following analyses, we
considered the homogenization problem of the 3D NPR
material shown in Fig. 5. Owing to the symmetry of the
cell structure, we considered only a quarter of the cell
structure, which results in a two-dimensional analysis
problem as shown in Fig. 11; meanwhile, Fig. 11 illustrates
the problem setup for the first mode under a unit stress
eð1Þ ¼ f1,0,0,0,0,0gT. Here, in Fig. 11, the concentrated
force P1 should be a quarter of the total force (unit stress
multiplied by the top area of the cell) applied on the top of
the cell. The boundary conditions were determined by
considering the periodic conditions as well as the
connectivity among the adjacent cells as discussed in
Section 3.6.
The analytical problem shown in Fig. 11 can be

analytically solved using the assumption of the Euler-
Bernoulli beam for the bending along with the tension of
all of the members. As a result, we obtained the analytical
solution for Δ1 and Δ2 as functions of P1 as follows:

Δ1 ¼
ðg111 þ g211Þðg122 þ g222Þ – ðg112 þ g212Þ2

g111 þ g211
P1

Δ2 ¼
g211g

1
12 – g

2
12g

1
11

g111 þ g211
P1

8>>>><
>>>>:

,

(59)

Fig. 10 Loading and boundary conditions for the homogenization of a 2D NPR cell structure
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where

g111 ¼ a1sin
2�1 þ b1cos

2�1

g112 ¼ ða1 – b1Þsin�1cos�1
g122 ¼ a1cos

2�1 þ b1sin
2�1

8>>><
>>>:

,

g211 ¼ a2sin
2�2 þ b2cos

2�2

g212 ¼ ða2 – b2Þsin�2cos�2
g222 ¼ a2cos

2�2 þ b2sin
2�2

8>>><
>>>:

,

(60)

a1 ¼
l1

E1A1
, b1 ¼

l31
12E1I1

, a2 ¼
l2

E2A2
, b2 ¼

l32
12E2I2

:

(61)

In the above formulation, there are only 3 independent
design variables among �1, �2, l1, and l2, and the follow-
ing relationship exists

l1sin�1 ¼ l2sin�2: (62)

The mass density can be obtained as

�H ¼ 4ð�1l1A1 þ �2l2A2Þ=Ve, (63)

where Ve is the total volume of the cell.
Based on the above analysis, the corresponding strains

along the x and y directions were obtained. Here, εX ¼
Δ1=he and εY ¼ Δ2=ðl1sin�1Þ. Figure 12 illustrates the
effective Young’s modulus (GPa) as a function of two
design variables, �1 and �2 . Here, the horizontal axis was
�1 and the vertical axis was the difference angle between
�2 and �1 . For this typical setup, the material became stiffer
when �1 became small and the difference between �2 and
�1 became small; the effective Young’s modulus (in black)
varied from 1 to 50 GPa in the parameter range considered.
Figure 12 also shows the density contour (in red) as a

percentage with respect to the design variables. It is seen
that the density also increased when �1 became small and
the angle difference became small; meanwhile, from the
map, the optimal designs can be obtained for the given
densities. For example, a 50 GPa design can be obtained at
a material density of 25% when �1 is approximately 8° and
�2 is 53°. Figure 13 illustrates the effective Poisson’s ratio
(as a percentage) obtained from the analysis. The Poisson’s
ratio reached the most negative number (less than -0.6)
when �1 was within 10°‒15°, �2 was within 20°‒30°, and
the material density was near 25%. Notably, the analysis
results depended on the other parameters used for the cell
element; however, studying the actual material properties
was not the purpose of this study.

Figure 14 illustrates the problem setup for the second
mode under a unit stress eð2Þ ¼ f0,1,0,0,0,0gT. Owing to
the symmetry of the cell structure, we considered only a
quarter of the cell structure and the two-dimensional
analysis problem shown in Fig. 14. Here, the concentrated
force P2 should be the total force because of the unit stress
applied on the side of the cell.
The analytical problem shown in Fig. 14 can be

analytically solved with the same assumptions as the first
case. As a result, for Mode 2, we have

Fig. 11 Analysis model for characteristic mode 1

Fig. 12 Effective Young’s modulus (in black and GPa) for
Mode 1

Fig. 13 Effective Poisson’s ratio (in black and 100%) for Mode 1
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Δ1 ¼
g211g

1
12 – g

2
12g

1
11

g111 þ g211
P2

Δ2 ¼
g111g

2
12

g111 þ g211
P2

8>>>><
>>>>:

: (64)

Figure 15 illustrates the effective Young’s modulus
(GPa) (in black) as a function of the two design variables
�1 and �2 . For this typical setup, the material became stiffer
when �1 became larger and the difference between �2 and
�1 became larger; the effective Young’s modulus varied
from 0.5 to 20 GPa in the parameter range considered.
Figure 16 illustrates the effective Poisson’s ratio (100%)
obtained from the analysis. The Poisson’s ratio reached the
most negative number (less than -2.0) when �1
approached 40φ and �2 was within 70φ‒80°.

Note that the shear mode shown on the right in Fig. 10
and the other two shear modes in the three-dimensional
problem could have been considered but were omitted in
this study.

4.2 Characteristic modes

Figure 8 illustrates the uniform unit strain fields in Eq. (37)
applied in the two-dimensional cellular domain. As an

example, Fig. 17 illustrates the characteristic deformation
modes for the unit cell of a two-dimensional NPR material
obtained using the homogenization process presented in
this study. Here, the top left is the deformation shape of the
first characteristic mode corresponding to a unit strain field
eð1Þ ¼ f1,0,0g, the top middle is the deformation shape of
the second characteristic mode corresponding to a unit
strain field eð2Þ ¼ f0,1,0g, and the top right is the
deformation shape of the third characteristic mode
corresponding to a unit strain field eð3Þ ¼ f0,0,1g.

Figures 18‒20 further illustrate the strain distributions in
the above characteristic modes. Figure 18 is the strain
distribution in the first characteristic mode, Fig. 19 in the
second characteristic mode, and Fig. 20 in the third
characteristic mode.
Note, using Eqs. (56) and (58), the stress distributions in

the characteristic modes can also be obtained, but these
were omitted in this study.

5 Material properties of BTR materials

To estimate the effective material properties of BTR
materials, a strain-based homogenization process was
used. Figure 21 illustrates the three major characteristic

Fig. 14 Analysis model for characteristic Mode 2

Fig. 15 Effective Young’s modulus (in black and GPa) for Mode 2

Fig. 16 Effective Poisson’s ratio (in black and 100%) for Mode 2

Fig. 17 Unit uniform strain field applied in the 2-dimesional
cellular domain (top left: Characteristic Mode 1, top middle:
Characteristic Mode 2, top right: Characteristic Mode 3)
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modes considered in this study. Note that the two-
dimensional figures shown in Fig. 21 actually represent
three-dimensional structures. Additionally, note that
because a major advantage of BTR material is its high
out-of-plane bending stiffness and out-of-plane bending
strength, the effective bending stiffness was considered
(Fig. 21(c)) instead of the shear modulus.
From Fig. 21(a), the homogenized in-plane tension

modulus EH
in-plane can be obtained as

EH
in-plane ¼

2t1
h2 þ 2t1

E1 þ
2l21A3

ðh2 þ 2t1Þðl21 þ h22Þ
3
2

E3: (65)

From Fig. 21(b), the homogenized out-of-plane com-
pression modulus EH

out�plane can be obtained as

EH
out�plane¼

1

l21

ðh2 þ 2t1ÞE1E2

h2E1 þ 2t1E2
A2 þ

4ðh2 þ 2t1Þh32A3

l1ðl21 þ h22Þ
3
2

E3

0
@

1
A:

(66)

From Fig. 21(c), the homogenized (unit) bending
stiffness ðEIÞHbending can be obtained as

ðEIÞHbending ¼
1

12
E1½ðh2 þ 2t1Þ3 – ðh2Þ3�: (67)

The effective mass density �H can be obtained as

�H ¼ 2t1
h2 þ 2t1

�1 þ
A2

l21
�2 þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ h22

p
A3

l21h2
�3: (68)

Fig. 18 Strain distribution of characteristic Mode 1 (left: εx , middle: εy , right: gxy)

Fig. 19 Strain distribution of characteristic Mode 2 (left: εx , middle: εy , right: gxy)

Fig. 20 Strain distribution of characteristic Mode 3 (left: εx , middle: εy , right: gxy)
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Figures 22‒24 illustrate example results obtained from
the above formulations for a typical design case. Here, only
two design variables, the stuffer height h2 and the sheet
thickness t1, were varied for the parametric studies. Note
that all the results in Figs. 22‒24 were normalized with the
initial values t1 ¼ 1 mm and h2 ¼ 15 mm.

Figure 22 shows the normalized bending stiffness with
the normalized area density. The bending stiffness
increased by increasing either design parameter, but an
increase in the stuffer height was more effective than
increasing the sheet thickness. This map was useful for
selecting a proper design. For example, by selecting t1 ¼
1:5 mm and h2 ¼ 21:6 mm, we could increase the bending
stiffness by 3 times while only increasing the area density
by 1.4 times.
Figure 23 shows the normalized in-plane modulus with

the normalized area density. The in-plane modulus was
insensitive to the design changes in this case. Figure 24
further shows the normalized out-of-plane compression
modulus with the normalized area density. In this case, the
out-of-plane modulus decreased when the stuffer height
was increased, but it was less sensitive to design changes in
the sheet thickness. Note that the analysis results also
depended on other parameters used for the cell element;
however, studying the actual material properties was not
the purpose of this study.

Fig. 21 Strain modes of BTR cell. (a) In-plane tension; (b) out-plane compression; (c) pure bending

Fig. 22 Normalized bending stiffness-normalized area density
map

Fig. 23 Normalized in-plane modulus-normalized area density
map

Fig. 24 Normalized out-of-plane compression modulus-normal-
ized area density map
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6 Conclusions

MAC material is defined as a class of engineered materials
having configurable cells of relatively large size. MAC
materials can be architecturally designed to achieve
various desired material properties. Two types of novel
MAC materials, negative Poisson’s ratio material and
biomimetic tendon reinforced material, were introduced in
this study. To estimate the effective material properties and
to optimally design such materials, a set of suitable
homogenization methods was developed to provide an
effective means for the multiscale modeling of MAC
materials.
A mechanics-based homogenization approach was

presented, resulting in two versions of the method:
strain-based homogenization and stress-based homogeni-
zation. The strain-based homogenization process was
obtained based on the principle of virtual displacements,
and the stress-based homogenization process was obtained
based on the principle of virtual forces. Strain-based
homogenization separates the strain field into a homo-
genized strain field and a strain variation field superposed
on the homogenized strain field. The stress-based homo-
genization separates the stress field into a homogenized
stress field and a stress variation field. The principle of
virtual displacements (principle of virtual forces) for the
relationship between the strain (stress) variation field and
the homogenized strain (stress) field was then used to
condense the strain (stress) variation field to the homo-
genized strain (stress) field, and the homogenization
processes became coordinate reductions similar to a
Guyan reduction.
The new derivation in this study provided improved

engineering insight and enhanced physical understanding
for dealing with boundary conditions, internal forces, and
other issues in the homogenization modeling processes.
The stress-based homogenization process can be extended
easily to handle discrete systems, providing a bridge
between discrete and continuum systems. The mode
analysis and the recovery process presented in this study
are useful tools for failure mode prediction, failure mode
management, and the design optimization of architectured
materials.
This new method provides an alternative means to

further improve the accuracy and efficiency of multi-scale
analysis problems. The formulations developed in this
study included calculating the effective (homogenized)
mass density, which can be directly used for dynamics
analyses of structures based on MAC materials. It was
noted that by iterating the analysis process, this method can
also be extended to solving nonlinear problems, which will
be discussed in a separate study. Furthermore, it can be
easily extended to handle other various mechanical
simulation and design problems. The newly derived
method was utilized to obtain the effective material

properties of the novel architectured cellular materials
discussed in this study.
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